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A new derivation is presented of some variational approximations for classical 
lattice systems that belong to the class of cluster-variation methods, among 
them the well-known Bethe Peierls and Kramers Wannier approximations. The 
limiting behavior of a hierarchical sequence of cluster-variation approximations, 
the so-called C hierarchy, is discussed. It is shown that this hierarchy provides a 
monotonically decreasing sequence of upper bounds fn on the free energy per 
lattice site f and that f , - -+f as n ~ oo. Our results are based on extension 
theorems for states given on subsets of the lattice, which might be of some 
independent interest, and on an application of transfer matrix concepts to the 
variational characterization of translation-invariant equilibrium states. 

KEY WORDS:  Classical lattice systems; variational principle; translation- 
invariant equilibrium states; cluster-variation method. 

1. I N T R O D U C T I O N  

If one wants to predict the macroscopic thermodynamic behavior of a 
system on the basis of a model for its microscopic structure, one is faced 
with the problem of calculating the free energy density of the system in 

equil ibrium. A convenient  approach  to this problem is via the var ia t ional  

principle that states that  the equi l ibr ium free energy density is the 
m i n i m u m  of the free energy funct ional  over a certain set of the rmodynamic  
states. 

In practice it is necessary to in t roduce some kind of approx imat ion  to 
cast the var iat ional  problem into a manageable  form. A well-established 
technique is to restrict the var ia t ion to a subset of all admissible states that 
may be characterized in terms of a finite n u m b e r  of parameters  and to 
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minimize by variation of these parameters. Evidently this technique results 
in an upper bound for the free energy density. 

In this paper we are concerned with classical lattice models. The well- 
known mean-field approximation then falls into the above-mentioned 
category. It corresponds to restricting the variation to the set of all product 
states, i.e., states without correlations between the lattice sites. 

An attempt to provide a systematic set of improvements on the mean- 
field approach by taking into account more and more correlations between 
sites is the cluster-variation method (CVM). (1) The CVM includes the well- 
known Bethe-Peierls approximation (2'3) and the Kramers-Wannier 
approximation. (4) The basic feature of the CVM is that it supplies 
approximate expressions for the configurational mean entropy (entropy per 
lattice site) in terms of the entropy expressions for finite clusters (sets of lat- 
tice points). For lattice models with finite-range interactions it is then 
possible to construct an approximate expression for the free energy 
functional which depends only on the restriction of the thermodynamic 
state to a certain finite set of clusters, the so-called basic clusters. This 
expression then is minimized by variation of the probability density 
functions corresponding to these basic clusters. 2 Thus it would seem that 
CVM approximations are of an entirely different character than the mean- 
field approximation. 

Despite its limitations (e.g., it is known that critical exponents cannot 
be reproduced correctly by the CVM) the CVM seems to be to date the 
best available approximation method for calculating phase diagrams from 
molecular interactions. (6) It has been used extensively during the past 
decades (for some examples see Refs. 6-13). In contrast to the huge amount 
of applications, comparatively little effort has been spent on clarifying the 
exact nature of the approximations involved in the CVM and their 
influence on the results of the calculations. (14) 

This paper is the third in a series reporting results of an investigation 
into the nature of the CVM. (15'16) It is our hope that a better understanding 
of the mathematical aspects of the CVM approximations will help to 
answer the major practical question in applications: namely, what 
correlations should be taken into account in setting up the approximation 
and what correlations may safely be neglected; in other words: how to 
select the basic cluster(s) so as to achieve maximum accuracy with a 
minimum of computational effort. 

This paper is mainly concerned with the so-called "C hierarchy" of the 
CVM, introduced by Kikuchi and Brush. (~7) This sequence of cluster- 
variation approximations for the square lattice in two dimensions, Z 2, is 

2 For a review of the cluster-variation method see Ref. 5. 
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interesting for several reasons. It is one of the more successful hierarchies of 
approximations for two-dimensional lattices, it includes the Kramers-Wan- 
nier approximation as its first element, and it provides some insight into 
the general structure of equilibrium states for finite-range interactions. 
Moreover our analysis of this C hierarchy leads to some results on the 
quasichemical or Bethe-Peierls approximation. 

The organization of this paper is as follows. In Section 2 we introduce 
briefly the necessary background, define some notation, and, for com- 
pleteness, review the relationship between the variational principle for the 
free energy per lattice site and the CVM. 

In Section3 a new derivation of the C hierarchy of CVM 
approximations is presented. Our approach enables us to prove that the C 
hierarchy provides a monotonically decreasing and converging sequence of 
upper bounds f ,c  for the free energy per site f .  The structure of the 
approximations to the equilibrium state is discussed too. 

In Section 4 we apply the techniques of Section 3 to the Bethe (or 
Bethe-Peierls or quasichemical) approximation. It is proved that for a 
large class of models on Z 2 this approximation provides an upper bound 
for the mean free energy f and that the Bethe mean free energy fB is an 
improvement over the mean-field prediction U.~IF in the sense that 
fMF ~ fB ~ f" The situation is different on the triangular lattice, however: in 
that case the first "sensible" improvement over the mean-field 
approximation seems to be the triangle approximation of the CVMJ 1~ 

Section 5 contains a summary and some final remarks. It is pointed 
out how the exact results of the previous sections suggest various practical 
improvements or extensions of the CVM techniques. Also the relation 
between our approach to the approximations and previous formulations of 
the CVM is briefly discussed. 

The results of Section 3 suggest the existence of an exact variational 
principle for the mean free energy which depends only upon the restriction 
of the thermodynamic states to a certain minimal subset of Z 2. Such a 
variational principle is established in an Appendix. The results of the 
Appendix sharpen a result given in Ref. 16. 

2. C L U S T E R  E X P A N S I O N  OF T H E  E N T R O P Y  A N D  T H E  C V M  

Consider the square lattice in two dimensions Z 2. The origin 
(0, 0)~ Z 2 will be denoted by 0 and 61 and 62 will be the unit vectors (1, 0) 
and (0, 1), respectively. The 61 direction will often be called the horizontal 
direction and the 62 direction will be called the vertical one. 

With each lattice point or site a of Z 2 we associate a variable ("spin") 
~ ,  which can take values in a finite set f2o. The configuration space for a 
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subset X of Z 2 is (2x=  ((2o) x and the configuration space for the ther- 
modynamic (infinite) system on the whole lattice is (2=((2o) z2. If 
Xc~ Y= #3 and ~Oxe(2x, ~oye (2y, we denote by COxX ~oy the configuration 
on X w  Y that coincides with ~Ox on X and with o) y on Y. If ~o is any con- 
figuration on X and Y c  X we denote the restriction of co to Y by ~o ~. 

Viewing (2o as a discrete metric space observables of the system can be 
identified with real-valued elements of C((2) [respectively, C((2x) in case of 
a finite subsystem], where C((2) denotes the continuous functions on (2. 

On (2 o we take as a priori measure the (unnormalized) counting 
measure ~o. The product measures on (2x will be denote by #o as well. 
Integration with respect to #o will be denoted by the symbol < . )o .  

A (macro-) state of the system (any specific configuration may be 
viewed as a microstate) is a positive, linear, normalized functional on 
C((2). By restriction to C(~2x), X finite, it defines a density function pi,X] 
such that for all f e  C(Qx) 

p ( f )  = <f  . p[X] )o (1) 

The set of density functions {pi,X], X c  Z 2, ]XI < oo } (here ]Xt denotes the 
number of sites in X) defined by a state p obeys the following: ( i )nor-  
malization conditions: for all X, 

<P[X])o= Z P[X](o~ (2) 
~OXE~2 X 

and (ii) compatibility conditions: for all Y and Z with Y n  Z = X ~  ~ ,  

p[y](~• ~] ;[z](~o~x~o~) (3) 
O) y \ y  f-Oz\x 

for all ~ox. 
Since lattice translations induce translations on C(f2) and on the set of 

states in a natural way, a state may be translation invariant, and the set of 
translation-invariant states will be denoted by L We shall also frequently 
use the notion of "local translational invariance": a state Px on C((2x) is 
locally translation invariant (1.t.i.) if and only if 

Px( f )  = Px('Cf) 

for all f ~  C((2x) and all translations r such that rfeC((2x).  The set of 
locally translation-invariant states on C((2x) will be denoted by Ix. 

The Hamiltonian for a finite, nonempty subset A of Z 2 is 

Hi-A]= ~ '~I,X] (4) 
X c A  
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where q~[X] is the potential function associated with the cluster (set of lat- 
tice points) X. The interaction ~b will be taken translation invariant and of 
finite range. 

In the next section we shall impose some more restrictions on the 
interaction. Specifically we shall require some reflection symmetry: let O/be  
the reflection in a line l in Z 2 such that the lattice (considering Z z as 
imbedded in R 2) is mapped onto itself by Ol. The induced transformations 
of f2 and of C(f2) will be denoted by Ol as well. We shall call the interac- 
tion symmetric with respect to l if 

m [x] (cox)=  m [ o , x ] ( o , c o , )  (5) 

for all clusters X and configurations cox. 
Translation-invariant equilibrium states (we shall call them simply 

equilibrium states in this paper) may be characterized by the variational 
principle (18,19) 

f=min {p(e)-s(p)} (6) 
p ~ l  

Here e is an observable representing the mean energy (energy per site) in 
any translation-invariant state; 

s ( p ) =  lim Sp[A] (7) 
A~z2 IA[ 

is the mean entropy of the state p, and fi = (kT) 1 has been absorbed into 
the interaction, f is the mean free energy of the system in equilibrium. 

The entropy of the finite subsystem in A in the state p, Sp[A], is given 
by 

Sp[A] = - p ( l o g  p [ A ] )  = - < p [ A ]  log p[A] >o (8) 

Sp[A] is an increasing, strongly subadditive function of A and a concave 
function of p. s(p) is a w*-upper semicontinuous and affine function of 
p ~ L Moreover one has for p ~ I that for most sets X c  Y 

sp[Y]  - s p [ x ]  > l Y \X l  . s(p) (9) 

(cf. Ref. 18, p. 47; Ref. 19, p. 40). We shall make frequent use of Eq. (9) or 
its analog for infinite sublattices of Z 2. 
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In order to describe the cluster-variation formalism we introduce a 
cluster expansion for the mean entropy(2~ By defining the M6bius 
transform q [ ' ]  of log p[" ] via (22) 

logpEX]= ~ qEY] 
Y=x (10) 

qEX]= • ( - 1 )  Ix\ ~l log p[ Y] 
Y c X  

we may express the mean entropy as the formal series (Is) 

s ( p ) = -  Z p(qEX]) 
x ~ o  IXl 

= -Y* p(qEX]) 
Y 

= -Y'*  (pEX] q[X] >o (11) 
X 

Here Z* denotes summation over all clusters X such that no two clusters 
are translates of one another; in other words each equivalence class with 
respect to translations contributes one term to the summation. Since the 
mean energy e may be chosen (~8) 

e=~* ~bEX] (12) 
Y 

the variational principle Eq. (6) may be written 

f =  min r (13) 
p ~ I  

with 

r = ~*  <pEX](~EX] + qEX])>o (14) 
X 

Owing to the finite range of the interaction there is only a finite num- 
ber of nonzero terms ~[X];  however, in general the number of nonzero 
terms q[X] and (pEX].q[X])o will be infinite. 

In the CVM formalism one introduces a first approximation by trun- 
cating the formal series for the mean entropy. Clusters X corresponding to 
terms retained in the summation are often called "preserved clusters." 
CVM approximations may be labeled by the set U of preserved clusters, 
and the object function for the minimization procedure is in the U 
approximation, 

Cu(p) = ~* (pEX](,1,EX] +qEX1))o (15) 
X : X  ~ U 
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Since ~bv(p) only depends on the (in general finite number of) density 
functions p[X] for which X e U  a second approximation is now 
introduced: the minimum of ~b v is determined, not by variation of p e / ,  but 
by variation of the p[X], Xe U, taking into account the normalization 
conditions [equation (2)] and the compatibility conditions [equation (3)] 
that link them, as well as the requirement of local translational invariance 
for each, but neglecting those compatibility conditions that involve clusters 
eU. This may constitute an additional approximation since whereas every 
p e I  determines a compatible set {p[X] ,XeU} the converse may not 
necessarily be true. This means that the variation in the CVM may include 
nonphysical local states, i.e., sets of density functions p[J(], Xe  U that can- 
not be obtained from a thermodynamic state p e L 

Neglecting all compatibility conditions that involve clusters Jfq~ U is 
equivalent to the following "compatibility assumption": it is assumed that 
the set of density functions {~5[X], J fe  U} that results from the CVM 
minimization procedure admits an extension to a state f i e / ,  in other words 
that the local states Px on C(Ox) are compatible with a global state fi on 
C(f2). If the compatibility assumption is valid, then the neglect of the 
above-mentioned compatibility conditions is justified; if it is not valid, 
however, the CVM approximation results in a set of nonphysical density 
functions and the relevance of the approximation is doubtful. 

An analysis of a specific CVM approximation thus involves an 
analysis of the following extension problem: given a set of density functions 
{p[X], Xe  U} that are normalized, compatible, and locally translation 
invariant, is there a corresponding translation-invariant state p on C((2)? 

3. T H E  " C  H I E R A R C H Y "  OF T H E  C V M  

We introduce some notation for subsets of Z 2 which we shall use in 
the sequel: 

k , i - { z = ( z , , z z ) ~ Z 2 l z l s { k  ..... k + n - a } , z  z i} (16) t n  - -  

Li= {z=(zx,z2)eZ21z2 "--i} (17) 

D,k,i- {z=(za,z2)~Z21zaE {k,...,k + n - 1 } , z 2 ~  {i,i+ l } (18) 

D'= {z=(zl ,zz)~Z21z2~ {i, i+ 1}} (19) 

(respectively, lines and double lines). In most cases the position of a specific 
set in the lattice will be irrelevant owing to translational invariance; in 
those cases we shall denote any translate of one of the sets defined above 
by the same symbol but omit the superscripts k, i. 
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As to the interaction ~b we shall require 

q~[X] = 0 unless XcD2 (20) 

Here D2, in accordance with equation (18) and the remark above, denotes 
any square of four nearest-neighbor pairs in Z 2. As a consequence of 
equation (20) the observable for the mean energy e may be taken to be an 
element of C(f2o2 ). 

Moreover we shall require some reflection symmetry, as announced in 
the previous section: we shall require ~ to be symmetric with respect to the 
coordinate axes. Owing to the translational invariance of ~b this implies 
symmetry with respect to all lines parallel to these axes. 

In the C hierarchy of the CVM the mean entropy of a translation- 
invariant state p is approximated by (17) 

C n ( P )  = { S p [ D n ] -  S p [ O n - 1 ] }  

- { S o [ L . ]  - S o I L . _ , ]  } (21) 

The corresponding variational problem is 

f c  = rain {p (e ) -  C,(p)} (22) 
p ~ ID n 

Here the minimum is sought among the locally translation-invariant states 
on C(t2o,). This approximation may be derived from the general setup of 
the CVM by choosing as the set of preserved clusters Dn and all its subsets. 
In this section we present an alternative derivation of the approximation 
equation (22) that clarifies the nature of this approximation. 

We start by restating some results that have been published 
previously. (16) 

D e f i n i t i o n  I. For any s t a t e p ~ I o r p ~ I  D, 

(i) s l (p )=  lim Sp[Ln'] 
n ~ c t 3  n 

(ii) s2(p) = lim Sp[D,] 
n~ 0o 2n 

(iii) b(p)=2sz(p)-sl(p) 

L e m m a  I. (16) For any p~Ior  ID 

lim Cn(p) = b(p) 
n ~ o o  
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L e m m a  II. (16) For any p E I e  there exists a sequence (/3n) i n / s u c h  
that 

(i) 

(ii) 

(iii) 

lim s(/3,,)=b(p) 
n ~ o o  

lim /3n(e) = p(e) 
1 l ~  c o  

lim /3n[A]=p[A] 
n ~ o o  

for any finite A c D. 

Lemma II implies the following extension theorem: 

T h e o r e m  I, For any peID there is a / 3 e I s u c h  that 

(i) /3 is an extension ofp  

(ii) s(/3)=b(p) 

Proof. Let (/3,) be the sequence in I corresponding to p e ID as given 
by Lemma II. There is at least a subsequence of (/3,,) that converges in w* 
sense to a state i3eI  (since I is w* compact; alternatively use 
Proposition 1.4 of Ref. 18). That/3 is an extension of p is a consequence of 
Lemma II(iii) and the continuity of 13 and p. As to the entropy of/3, by the 
upper semicontinuity of s 

s(/3) ~> lim s(/3,,) = b(p) (23) 
n ~ o o  

Since/3 is an extension of p we have b(/3)= b(p), so 

s(/3) ~> b(/3) (24) 

On the other hand, since for any state/3 e I 

S~[D,] - S~[L,,] >in's(~3) (25) 

[cf. Eq. (9)], it follows from Definition I that for any/3 e l  

b(/3 ) >1 s(fi ) (26) 

Combining Eqs. (24) and (26) establishes that s(/3)= b(/3)= b(p), which 
completes the proof of Theorem I. | 

For our next theorem we consider a special class of locally translation- 
invariant states on C(f2Oo), namely, "symmetric" ones. Let O, denote reflec- 
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tion in the line x 2 = i +  1/2 (here we view Z 2 as imbedded inR2); so Oi 
interchanges the lower and the upper line o fD i. The induced transfor- 
mations of configurations, observables and states will be denoted by Oi as 
well. Often we shall omit the location index i. The set of locally translation- 
invariant states on C(f2D~ that are invariant under O ("symmetric") will be 
denoted by I~n. 

Crucial in our analysis of the C hierarchy is the 'following extension 
theorem. 

T h e o r e m  I I .  

(i) 

(ii) 

For  any p e I~. there is a state ~ ~ I D such that 

t~ is an extension of p 

b(p)=S~[D~]-S~[D~ 1] - S l ( p )  

>>. C.(p  ) 

Proof. Let P ePDo and consider the associated density functions 
p[Dn] and p[Dn 1]. Using these functions we define density functions 
~ [ D , + k ]  on sets D,+k for k =  1, 2,... by 

H~=o pEDn](COD'. +'.') 
p[D,+k](Co ) = 

H~=l p[D,_ ~ ] (COD;-_,i,) 
(27) 

for all co e f2D~(~,, with i and j arbitrary. For configurations for which the 
denominator is zero the numerator is zero as well and we define the 
quotient to be zero. One easily verifies that ~[Dn+k] is a well-defined, 
properly normalized density function and that the set of ~[Dn+~] is com- 
patible: ~ [ D n + k + l ]  may be reduced to p [ D . + k ]  by summation over the 
spins in Dn+k+~\D.+k. Thus the set of t3[Dn+k] defines a state p on 
C(OD). By construction p is invariant for translations in the 01 direction 
and it is an extension of p. To show that p e ID it remains to prove that its 
restrictions to the lower and the upper line coincide (are isomorphic). This 
now follows trivially from the fact that p inherits the reflection symmetry 
of p. Hence ~ e I~ ~ I D. 

The extension procedure defined by Eq. (27) will be referred to as 
Markov extension, for obvious reasons. 

Now we shall calculate b(~). From Eq. (27) we find 

2s2(p) = lim 
m-~oo m 

(m - n + 1) Sp[D,,] -- (m - n) Sp[D,,_ 1] 

= SPED,,] -- Sp[D,,_ 1] (28) 
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Furthermore, 

13} 

= { S p [ - L n ] - S p [ L n  1]} (29) 

[cf. equation (9)]. Hence, 

b(fi) = 2s2(j0) - sl(~) 

= S ~ [ D , ] - S ~ [ D ,  1] - s,(~) 

>i cn(p ) 

This completes the proof of Theorem II. | 

By combining Theorems I and II we have the following: 

T h e o r e m  III. For any p e I~. there is a ~ ~ I such that 

(i) ~ is an extension of p 

(ii) s ( ~ ) = S ~ [ D , ] -  S~[Dn_I]-s~(~) 

>1 c.(p) 

Let M~ denote the subset of I consisting of states that may be obtained 
from a state of I~). by the construction outlined above ("Markov exten- 
sions"). A state p~Mn may thus be constructed from its restriction to 
C(~2Dn ), or, equivalently, from its density function p[D~]. For the entropy 
of such a state 

s(p) = b(p) = 2s2(p) - sl(p) 

= Sp[D,] - Sp[D._ ,1 - s l (p )  >~ Cn(p) (30) 

Notice that for all n 

~ M ~ M n + I ~  "" ~ I ~ I  (31) 

Now we are in a position to introduce an approximation to the variational 
principle Eq. (6) in the "standard" fashion, namely, by restricting the 
variation to the subset Mn of I: 

f l =  min {p(e) -s (p)}  (32) 
p ~ M n  

Obviously, 

f n  ~ 1 . . . x~.fn+l~ >~ f (33) 
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In order to be able to approximate the entropy of a state p ~ M,  by a finite 
computation s(p) is replaced by the lower bound provided by Eq. (30); 
after this additional approximation we have the approximate variational 
principle 

Then 

f ]  = min {p (e ) -  Cn(p)} (34) 
p c  Mn 

f2>_ 1 ~-fn (35) 

L e m m a  III. If e = O e  then 

ProoL 

f 2 _  c 
- fn  

By definition 

f c  = min {p (e ) -  C,(p)} 
p E lDn 

(36) 

By the definition of M,  and Theorem III the definition Eq. (34) of f~  is 
equivalent to 

So 

Let now fi 6 IDo 

f~  = min {p (e ) -  Cn(p)} (37) 
p ~ lDn 

f c  << f~ (38) 

be such that 

C m  fn -fi(e)-Cn(fi) (39) 

(Such a fi exists since f c  is the minimum of a continuous function on a 
compact set.) 

Let t5 be the Markov extension of fi to C(f2D) as defined by Eq. (27). 
By construction fi is invariant for translations in the 61 (horizontal) direc- 
tion; however, if f5 is not symmetric it is not obvious that fi is symmetric or 
even locally translation invariant for translations in the 62 (vertical) direc- 
tion. Thus define 

= �89 + o ~ )  (40) 

Then r ~ I~) and since e = Oe 

r = fi(e) = fi(e) (41) 
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Since s2( )  is affine 

s2(~) = s2(~) = �89 - S~[Dn !] } (42) 

so Ecf. equation (9)] 

Sp[D.]-S~[Dn-~]>~2s2(p)=Sp[Dn]-Sp[D.  1] (43) 

For any observable f e  C(f2c~/), i=O, 1 we have O o f e  C((2L~,~ ~) and 

P(f) = �89 + �89 
l -  1 -  = iP(f)  + ~p(Oof) 

=/5(f) 

k.O. since/5 is locally translation invariant on D,, , hence the restriction of fi to 
C(~2L,,) is equal to the restriction of fi to C((2L,,); in other words, 

~ [L,,] =/5[L,,] (44) 

Hence 

S p [ L . ] - S p [ L  n 1 ] = S r  (45) 

Combining Eqs. (39), (41), (43), and (45) we find 

f c > p ( e )  C. (p )>  2 - ~ f , ,  (46)  

Equations (38) and (46) establish the lemma. | 

We have thus shown that the C hierarchy of the CVM, which is usually 
derived via truncation of a formal cluster expansion for the mean entropy, 
may also be derived from the variational principle by restriction of the 
variation to a suitably chosen subset of the set of all translation-invariant 
states, followed by an approximation that serves to reduce the calculation 
of the entropy contribution to one that can be done in a finite com- 
putation. 

The condition that the energy observable must be symmetric (e = Oe) 
is not a restriction; for symmetric qs, e may always be written in a sym- 
metric form. 

Notice, by the way, that we have four equivalent expressions for the C 
approximation: 

f c =  min {p (e ) -  C.(p)} (47a) 
p ~ l~n 

f c =  min {p (e ) -  C~(p)} (47b) 
P ~ ID n 



14 

f c =  rain {p (e ) -  C~(p)} 
p ~ ID n 

f c  = min {p(e)-  C,(p) } 
p e l  

Schlijper 

(47c) 

(47d) 

Equation (47d) follows from the fact that on the one hand M~ ~ I and on 
the other hand the restriction to C((2D. ) of a state p e I belongs to IDa. 

The alternative derivation of the approximations of the C hierarchy 
presented above serves to prove the following: 

Theorem IV. 

(i) f~. >~ f 

(ii) ~ c > . r c  for all n>~2 J n  ~i  J n  -- 1 

(iii) lim f c = f  
n ~ o o  

Proof. Proposition (i) follows from Eqs. (33), (35), and Lemma III. 
As to proposition (ii), 

f c  = min {p (e ) -  C,(p)} 
p e M n  

~> min {p (e ) -  C,~+,(p)} + min {C,,+l(p ) -  Cn(p)} 
p r Mn p ~ Mn 

Since Mn ~ Mn +1 the first term is 

min {p(e)-Cn+l(p)} =f.+~c 
P c M n + I  

As to the second term, for p e M. 

Sp[D.+I]-Sp[D.]=Sp[D.]-Sp[D.  1] 

[cf. equation (27)]. Hence for p e M .  

C.+I(p)-Cn(p) 

= {SpELn]-Sp[-L,,_]]}- {SpELn+I]-SpFL.]} 

which is >~0 by the strong subadditivity of the entropy. Consequently, 

C ~  C f.  ~fn+l 

As to proposition (iii), from (i) and (ii) it follows that 

f 2  = lim f f  
n ~ o o  
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exists and that 

f c  >~f (48) 

Now let t5 e I be an equilibrium state, thus 

f =  r - s(fi) (49) 

Then 

f c  = lim min {p(e)-C,,(p)} 
n ~ o o  pEIDn 

~< lira {r C,,(15)} 
17 ~ 3O 

= f i ( e ) -  b(~) (Lemma I) 

= f i ( e ) -  s(fi) (Ref. 16, Corollary I) 

= f  (50) 

Equations (48) and (50) establ ishf  c = f ,  which completes the proof of the 
theorem. I 

The above theorem establishes that the C hierarchy of the CVM 
provides a monotonically decreasing and converging sequence of upper 
bounds f c  on the mean free energy f.  

Our next theorem shows how the states that minimize the 
approximate expression for the free energy functional in the C-hierarchy 
approximate equilibrium states. 

T h e o r e m  V. Let 15, e I3, be such t h a t f  c = f in(e)  - Cn(~n) .  Let ~, e I 
be the extension of/5 n as given by Theorem III. Let/5 be a w*-limit point of 
(t3,). Then/5 is an equilibrium state. 

P r o o f .  Obviously t5 e L Now 

p(e) = lim 15n(e ) = lim r ) 

and 

s(/5)~> lim s(~)>~ lira C~(/5.) 
n ~ o o  n ~ o o  
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f = m i n  {p (e ) -  s(p)} 
p~I  

<~ ~(e)- s(~) 

~< lira {~ , ( e ) -  C,(~,)} 

= lim f,c 
n ~ o o  

= f  

Hence f =  iS(e)- s(~), so ~ is an equilibrium state. 

C o r o l l a r y  I. If there is a unique equilibrium state ~5, then 

(with ~, as in Theorem V). 

Proof. The above statement follows trivially from Theorem V and 
the fact that I is w* compact. | 

4. T H E  BETHE A P P R O X I M A T I O N  

In this section we use the results of Section 3 to throw some light on 
the Bethe approximation. The Bethe or Bethe Peierls or quasichemical 
approach tries to take into account nearest-neighbor correlations and may 
be derived from the general setup of the CVM by choosing as preserved 
clusters only single points and nearest-neighbor pairs. 

In this section we shall use the notation n for any nearest-neighbor 
pair of sites in the lattice Z 2 and p for any single site. 

We have the following extension theorem. 

T h e o r e m  VI. Let p be a state on C(g?n) such that (i)p is locally 
translation invariant, (ii)p is symmetric, i.e., invariant for the transfor- 
mation that interchanges the two sites of n. 

Then there exists a state ~ e I such that (i) ~ is an extension of p, in the 
sense that its restriction to each nearest-neighbor pair coincides with p, and 

(ii) s(~)>/2Sp[n]- 3Sp[p] 

Proof. The proof is again by construction: denote any square con- 
sisting of four nearest-neighbor pairs in Z 2 by D 2 [-in accordance with 
Eq. (18)]. For any square D2 we number the sites from 1 to 4 counted 
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counterclockwise, taking the one in the lower left corner (the first one in 
lexicographical order) as number one for definiteness. A subset of D2 will 
be denoted by enumeration of the corresponding numbers. As a first step 
we extend p to triangles: define density functions for triangles {124} and 
{234} by 

pEn3(o-1, o-2)" pEn](0-l, 0"4) 
/3[124](al, 0-2 ,  0 - 4 ) =  p[p](a , )  

(51) 
pen](0-2, a3)" pEn](a3, 0-4) 

/3[234](a2, a3, 0-4)= 
pEp](a3) 

(As always, the quotient is defined as zero for configurations for which the 
denominator is zero.) Equation (51) defines an extension of p to these 
triangles, as may be checked by trivial computation. Now notice that 

f i[124](a, ,  a2, a4) 
O- 1 

= ~ p[-n](a,, 02) "pen](0-1, 04) 

~ P [P ] (~  

= 2 p[n](0-2, 0",)' pEn](ol,  0-4) 
~L p[p](a~)  

= ~ p[n](a2,  a3)' pen](0-3, a4) 

~3 PIP](0-3) 

= ~/3[234](0-2, 0-3, 0-4) (52) 
o- 3 

where we used the symmetry of p. 
Hence the two density functions defined by Eq. (51) are compatible 

and we may define a further extension of p to C(f2D~ ) via (in obvious 
shorthand notation) 

/31124]-/3[234] 
/3[1234] = (53) 

/3[24] 

where /3[24] is unambiguously defined, as established by Eq. (52). This 
defines a state /5 on C(f2o2 ) which has p its restriction to each nearest- 
neighbor pair contained in D 2 and is thus an element of ID2. Now we want 
to use Theorem III. Recalling the definition of the reflection O from Sec- 
tion 3, we define 

fi = �89 + 0/3) (54) 

822/40/1-2-2 
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(Or may be constructed in the same way as ~, starting with extension to 
triangles {123} and {134}.) 

Owing to the presupposed symmetry of p, r too, has the property 
that its restriction to each nearest-neighbor pair in D2 coincides with p. 
Since r E I~2, Theorem III now guarantees the existence of a further, trans- 
lation-invariant extension to the whole of Z 2. 

As to the entropy of t3, Theorem III states 

s(t3) = S~[D2] -- Sp[D1 ] --sl(f i)  

Now 

(55) 

Sp[D2] ~> �89 + �89 

= Sa[D2] 

= Sa[ 124] + S~[234] - S~[24] 

= 4SpEn] - 2SpEp] - S~[24] 

From the subadditivity of Sr  

S~[24] ~< S~[2] + S~[4] = 2Sp[p] 

So 

(56) 

(57) 

SoED2] >>- 4SoEn] - 4SpEp] 

Noting that D~ is a nearest-neighbor pair n and that 

st(fi) ~< Sr,[n] - So[p]  = Spin] -- Sp[p]  

[cf. Eq. (9)], we find from Eqs. (55)-(59) 

s(fi) >i 2So[-n] - 3Sp[p] 

which completes the proof of this theorem. | 

(58) 

(59) 

Remark. Note that the above theorem pertains to an isotropic 
situation where horizontal and vertical nearest-neighbor pairs are 
equivalent. For the anisotropic case the above construction only works if 
1s =2,  i.e., for the lattice gas or spin-�89 models. Otherwise the com- 
patibility expressed by Eq. (52) does not hold (as can be shown by explicit 
calculation). 

Let us now call states in I that may be obtained from a density 
function for a pair of nearest-neighbor sites in the manner of Theorem VI 
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"Bethe states." The set of Bethe states will be denoted by B. From the proof 
of Theorem VI it follows that [cf. Eq. (31)] 

B c M 2 (60) 

We introduce an approximation to the variational principle Eq. (6) by 
restricting the variation to the set of Bethe states and replacing the entropy 
contribution to the free energy by the lower bound provided by 
Theorem VI: 

Then 

f ~  = m i n  { p ( e )  - 2So[n 3 + 3So[p] } (61)  
R~B 

f~  ~> f (62) 

In the case of symmetric, isotropic nearest-neighbor interactions the 
variational problem Eq. (61) corresponds precisely to the Bethe-Peierls 
approximation on Z 2. Equation (61) essentially provides the generalization 
of the traditional Bethe approximation to models with an interaction that 
extends beyond nearest neighbor. However, there is the limitation that 
ee  C(f2D2 ) [cf. Eq. (20)]. 

The first approximation of the C hierarchy, based on the square D2 as 
basic cluster, is exactly the Kramers-Wannier approximation. 1417) 
Equations (58) and (60) imply 

fB~ fKW (63) 

On the other hand, since Bethe states include product states (mean-field 
states) and for a mean-field state Sp[n] = 2Sp[p],  one finds 

UMF• fB (64) 

SO we established that, as far as the prediction of the mean free energy is 
concerned, on Z 2 the Kramers-Wannier approach is indeed an 
improvement over the Bethe approach, which in turn improves upon the 
mean field result: 

fMF>~ fe~ fKW>>- f (65) 

The situation is different on the triangular lattice, however. On the one 
hand all our results for the square lattice have an analog for the triangular 
lattice, since the latter may be mapped onto Z 2 via the introduction of a 
suitable nonorthogonal coordinate system. On the other hand, as a con- 
sequence of the different topological structure of the triangular lattice, the 
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Bethe approximation o n  Z 2 does not correspond to the Bethe 
approximation on the triangular lattice under this mapping. Owing to the 
existence in the latter of triangles consisting of three translationally distinct 
nearest-neighbor pairs, the Bethe approximation on the triangular lattice is 
an example of a CVM approximation for which the compatibility 
assumption may be violated: given locally translation-invariant and com- 
patible density functions for nearest-neighbor pairs, there may not exist a 
translation-invariant extension to the entire lattice. An example is provided 
by the spin -1 Ising antiferromagnet: at very strong interaction the 
equilibrium state as predicted by the Bethe approximation has probability 
tending to one of finding opposite spins on each nearest-neighbor pair; 
obviously this state has no extension to triangles (the frustration effect), let 
alone to the entire lattice. For such models the Bethe approximation is thus 
an "unphysical" one; it would seem that in those cases the first sensible step 
beyond mean field is the Kikuchi triangle approximation, (1~ in which 
nearest-neighbor triangles, the nearest-neighbor pairs and single sites are 
taken as preserved clusters. That approximation may be based upon an 
extension theorem similar in spirit to the above theorems, thus showing its 
"sensibility." 

5. S U M M A R Y  A N D  F INAL R E M A R K S  

In this paper we have presented a new derivation of some interesting 
approximations of the cluster-variation method. The derivation employs an 
extension theorem to define a subset of the set of all translation-invariant 
states consisting of states that are obtained from their restriction to a finite 
part of the lattice, the so-called basic cluster. In the variational principle 
the variation is then restricted to this subset of admissible states and the 
entropy of these states is estimated in terms of a lower bound. We used this 
technique to make some statements about the C hierarchy of the CVM and 
about the (isotropic) Bethe approximation; however, there are other CVM 
approximations that may be treated by the same techniques, notably the 
so-called W hierarchy. (17~ 

In this paper we restricted our attention to classical lattice models on 
Z 2 with a translation-invariant interaction that is fairly short-ranged 
[cf. Eq. (20)] and that is symmetric with respect to reflections in the coor- 
dinate axes. These restrictions were motivated by the fact that our primary 
interest in this investigation was the C hierarchy of the CVM. 

Besides satisfying intellectual curiosity our results may have some 
practical relevance. For instance our derivation of the Bethe approximation 
shows how to apply this approximation to models in which the interaction 
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is not limited to nearest-neighbor pairs. Also CVM approximations may be 
improved by using a better (larger) lower bound on the entropy con- 
tribution, which is often easily obtained: again taking the Bethe 
approximation as an example, one might use Eq. (56) instead of Eq. (58) to 
provide the bound on the entropy, since the extension to relevant clusters 
larger than the basic cluster (the nearest-neighbor pair in this case) is 
known and may be calculated explicity. Thus it may be possible to improve 
upon a CVM approximation without going to a larger basic cluster. 

We want to stress the importance of the compatibility assumption (cf. 
Section 2) in all approximations of the cluster-variation type, since its 
influence or even its existence is not always realized. This importance is 
reflected in the fact that our results are all based on extension theorems 
that serve to show the validity of the compatibility assumption for the 
specific approximation at hand. On occasions some. CVM approximations 
have been reported to produce nonsensical results (23'24) instead of improv- 
ing on an approximation based on a smaller basic cluster (or on a smaller 
number of basic clusters); this may well be related to violation of the com- 
patibility assumption. 

We want to end with a brief discussion of the relation between our 
approach to cluster-variation approximations and previous formulations of 
these techniques. It may be helpful to consider the mean field 
approximation first. It is well known that the mean field results may be 
derived in a number of ways. Among the possible approaches are the 
following: 

(1) The effective field approach." The interactions between sites are 
replaced by an effective external field, i.e., the Hamiltonian is modified on 
the basis of physical intuition. 

(2) The combinatorial approach." In the evaluation of the partition 
function or "sum over states" the combinatorial factor (i.e., the number of 
configurations with specified energy) is calculated under the assumption 
that there are no correlations between different lattice sites. 

(3) The variational approach: In :the variational principle, the 
variation is restricted to the set of product states. 

Cluster-variation, and related approximations resulted from attempts 
to improve on the mean field approximation. Such attempts have been 
based, among others, on the effective .field concept and on the com- 
binatorial approach, b u t  not, to our knowledge, on the variational 
approach, in spite of the fact that from such a point of view it is most 
obvious how to improve the approximation: the variat ion should be 
restricted to a larger set of states than just the product states. Actually the 
work reported in this paper resulted from an attempt to derive the Bethe 
results along these lines. Thus, from the conceptual point of view, our 
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approach to the approximations differs completely from the effective field 
or combinatorial approach. 

On the more technical level, however, all three formulations are 
(of course) intimately connected. The original formulation of the 
C V M  (1'25'26) was  based on the combinatorial approach. Kikuchi derived his 
approximate expressions for the combinatorial factor using the following 
mental picture: one considers an "assembly ''(25) of finite lattices, each hav- 
ing a specific spin configuration; one now adds one site to each lattice and 
tries to assign values to the additional spin variables in such a way that a 
number of previously selected basic probabilities (e.g., the probability of 
finding any specific configuration on a pair of nearest-neighbor sites) are 
unchanged by this step in the construction of the lattice. Obviously, what 
happens here is an attack on what we called the extension problem (cf. Sec- 
tion 2): one tries to construct a thermodynamic translation-invariant state 
having prescribed restrictions to the chosen basic clusters. In a way the 
extension theorems that lie at the heart of our formulation are the for- 
malized mathematical counterpart of this early "assembly method ''(1'25'26) 
for constructing approximate expressions for the combinatorial factor. 

Later, Morita reformulated the CVM using the M6bius transfor- 
mation formalism (cf. Section 2)(2~ the M6bius transformation serves to 
automate the often complicated counting procedures that are inherent ifi 
the assembly method. Morita also showed (e.g., see Refs. 27, 28, and 
references therein) that the CVM may be formulated in terms of effective 
fields and effective interactions. 

[The above remarks on the CVM pertain to the Bethe approximation 
as well, since the Bethe approximation may be regarded as one of the CVM 
approximations (e.g., see Ref. 26).] 

Further insight in the connections between our formulation and the 
traditional ones may be obtained through a paper by Woodbury(29); 
Woodbury showed that a number of cluster-variation approximations may 
be derived from general properties of the entropy functionals Sp[A]; the 
notions of conditional entropy, Markov process and strong subadditivity 
are already implicitly present in his formulation. 

From the practical point of view of course all methods for deriving 
CVM formulas are equivalent: eventually, all derivations result in the same 
set of equations to be solved. From the theoretical point of view, however, 
each formulation has its specific advantages. The effective field approach is 
probably most useful if one is interested in statements about the predicted 
magnetization, since it provides consistency relations for that quantity. The 
combinatorial approach is handy to treat series expansions of the partition 
function. (26) For investigation of the free energy prediction the variational 
approach as developed in this work is a convenient starting point. 
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Moreover, an important advantage of our formulation is the fact that it is 
truly thermodynamic (infinite system) from the start; consequently possible 
problems associated with the taking of the thermodynamic limit are 
avoided. 
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APPENDIX:  A " M I N I M A L "  RESTRICTED V A R I A T I O N A L  
PRINCIPLE 

In a previous paper (~6) we established the existence of an exact 
variational principle for the mean free energy f which involved variation 
over Io instead of I and hence involved only restrictions to C(f2D) of ther- 
modynamic states. This result was based in essence on the existence of a 
transfer matrix, translated into the language of the variational charac- 
terization of equilibrium states. The existence of a transfer matrix is 
intimately related to the possibility of "Markovian extension." Since in the 
analysis of the C hierarchy the Markovian extension procedure was used in 
two orthogonal directions subsequently ("double Markovian extension") it 
is an interesting and in a way a natural question to ask whether there exists 
an exact variational principle for the mean free energy based on such 
double Markovian extension. Such a variational principle will be presented 
in this appendix. 

Consider the following subsets of Z 2 (recalling the definition of L~ ,i 
[Eq. (16)]: 

H ~  ' i - -  L,,k n+ l.i�9 u L~'i+ I (A1) 

S~ 'i = n~'~ w m ~  + 1,i (A2) 

S g'i= U S~ 'i (a3) 
n = l  

Often we shall omit the location indices k, i to indicate a n y  translate of one 
of the sets defined above. Thus Sn consists of any square D2 with two 
"arms," ( n -  1) points long each. 
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We shall proceed to prove that the entropy s(#) of an equilibrium 
state (5 may be calculated from its restriction to C(Os), and that essentially 
the state may be constructed from this restriction. This then sharpens the 
result of Theorem I and Corollary I of Ref. 16 where a similar proposition 
was proved for restriction to the infinitely long double line D. 

Def in i t ion AI. For any pEI s 

K . ( p )  = { S p [ S . ]  - S p [ H . ]  } 

- {So[L.]-Sp[L._,]} (A4) 

Theorem AI. For any p ~ I s there exists a state/3 m I D such that 

(i) /3 is an extension of p 

(ii) b(/3)= lim K . ( p ) - k ( p )  
n ~ o o  

Proof. Let p. denote the restriction of p ~ Is  to C(Os.). Define, for 
each n, a sequence of density functions for k =  1, 2 .... by 

Ik=U - [-Iki=_kP[Sn](coX~+i,y) 
/3. i k S '  +iJ (co)= 1_[)= k+lp[H.](COH'+'J) (as )  

for all co e C(~U) = -k #~ with l a n d j  arbitrary, again defining the quotient 
as zero for configurations for which the denominator is zero. This sequence 
of density functions defines a state/3, on C(OD)./3. is, by construction, an 
extension of Pn and translation invariant for horizontal translations. 
Moreover, from the local translational invariance of p. it follows that/3,  is 
locally translation invariant in the c~ 2 (vertical) direction for all f e C(f2L. ). 

At least a subsequence of (/3.) converges w* to a state/3; obviously/3 is 
an extension of p and an element of ID [consider local observables first and 
extend by continuity to the whole of C(OD)]. 

As to the entropy of/3, we have 

2s2(/3.) = Sp[ S . ]  - Sp[ H . ]  

= S~[S . ]  - S~[H. ]  >>. 2s2(/3 ) (A6) 

where the equality follows from Eq. (A5) and the inequality from Eq. (9). 
Taking n ~ oQ and using the upper-semicontinuity of s2(') 

2s2(/3) >~ l i r a  {Sp[S.] - Sp[ H . ]  } i> 2s2(/3) (A7) 
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Since furthermore 

we find 

s1(/3)= lim {S~[Ln] -  S~[Ln_I] } 
n ~ o  

= lim { S , [ L n ] - S p [ L n _ I ] }  (A8) 
n ~ o o  

b(/~) = 2s2(/) ) - s[(r = lira Kn(p) =- k(p) 
n ~ o ~  

and we have also established the existence of this limit. | 

T h e o r e m  All. (i) There is the following variational principle for 
the mean free energy f :  

f =  min {p(e) - k(p)} (A9) 
p ~ I s  

(ii) The restriction to C(s of an equilibrium state satisfies Eq. (A9), and 
each state in I s that satisfies Eq. (A9) is the restriction to C(s of an 
equilibrium state. 

Proof. 

Since 

it follows that 

Since [cf. Eq. (26)] 

From Eq. (9) we have for any p e I  D 

2s2(p) ~< Sp[ Sn] - Sp[ Hn] (A10) 

s l ( p )=  lim { S p [ L n ] - S p [ L ,  ~]} (Al l )  
n ~ o o  

b(p)~k(p) ,  for any p ~ I  D 

s(p)<~b(p), for any p ~ I  

p c I  

we have 

s(p) <~ k(p), for any 

Now let /5 61 be an equilibrium state, thus 

f = f i (e)-  s(fi) 

(A12) 

(A13) 

(A14) 

(AI5) 
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Let fi, be the restriction of fi to C(f2s). Then 

min {p(e) - k(p)} ~ fi,(e) - k(fis) 
p e l s  

= ~ ( e )  - k ( ~ )  

<.~(e)-s(fi) 

= f  (A16) 

On the other hand, let now ~s ~ Is be such that 

rain {p(e) - k(p)} = ~ (e )  - k(~+) (a17) 
p ~ I s  

Denote by ~ the extension of ~+. to C(g?) for which 

k(fi+.)= s(~ ) (a18) 

The existence of such a/5 e I is guaranteed by combination of Theorems AI 
and I. Then 

min {p(e) - k(p)} = ~,(e) - k(fi,) 
p E l s  

=/3(e) - s(r 

~>f (a19) 

Equations (A16) and (A19) prove proposition (i). Proposition (ii) then 
follows from the same equations. | 

In those cases where coexisting equilibrium states may be dis- 
tinguished by their expectation values for some observable in C(s (e.g., 
"magnetization") the above theorem implies that all equilibrium states 
have the "double Markovian structure" indicated by the proofs of 
Theorems AI and I, and that they are completely determined by their 
restriction to S. Since the possibility of restriction to D is the consequence 
of the existence of a (row-to-row) transfer matrix, Theorem AII then seems 
to indicate the existence of some stochastic operator that performs a similar 
role in the orthogonal direction for restrictions of equilibrium states to D. 

One may base a sequence of variational approximations on the 
variational principle Eq. (A9). Such approximations would be related to 
the approximation scheme proposed by Surda. (3~ 

Although Theorems AI and AII have been formulated and proved for 
the square lattice and an interaction that obeys Eq. (20), there are obvious 
analogs for d-dimensional models with general translation-invariant, finite- 
range interactions. 
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